9658

Your Roll No.

B.A. / B.Sc. (Hons.) / II MATHEMATICS – Unit IX

B

(Analysis – III)

(Admissions of 2008 and before)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any four parts from Question No. 1. Attempt any two parts from Q. No. 2 to Q. No. 5.

- 1. (a) Prove that in a metric space (X, d), each closed sphere is a closed set. 2½
 - (b) Let (X, d) and (Y, e) be two metric spaces. Prove that a sequence $\langle (x_n, y_n) \rangle$ in the product space converges to (x, y) if and only if $x_n \to x$ and $y_n \to y$.
 - (c) What is an isometry? Prove that every isometry from a metric space X onto a metric space Y is a homeomorphism.

- (d) Prove that every contraction mapping on a metric space is uniformly continuous. 21/2
- (e) Define completion of a metric space. Discuss the completion of Q (the set of rationals) as R (the set of all reals).
- 2. (a) Let (X, d) be a metric space. Define $\rho(x, y) = \frac{d(x, y)}{1 + d(x, y)} \quad \forall x, y \in X. \text{ Prove the } \rho \text{ is a}$ metric on X. Also prove that the metrics d and ρ are equivalent.
 - (b) Let (X, d) be a metric space and A, B C X. Then prove that
 - (i) A° is the largest open subset of A.
 - (ii) $A \subset B \Rightarrow A^{\circ} \subset B^{\circ}$
 - (iii) $(A \cup B)^{\circ} \neq A^{\circ} \cup B^{\circ}$

[Here, A° denotes the interior of set A]. 3½

(c) Show that the function $f: R \to]-1, 1[$ defined by $f(x) = \frac{x}{1+|x|}$ is a homeomorphism. $3\frac{1}{2}$

.

- 3. (a) Show that a closed subset of a compact metric space is compact. Also show that a compact subset of a metric space is closed.
 - (b) Let (X, d) be a metric space and let A, B be closed subsets of X such that A∪B and A∩B are connected. Show that both A and B are also connected.
 - (c) Show that every closed interval [a, b] is compact.
- 4. (a) State and prove Banach's fixed point theorem. 31/2
 - (b) Show that a complete subset of a metric space is closed. Also show that a closed subset of a complete metric space is complete.
 - (c) Prove that the space of all continuous real-valued functions on [0,1] with metric d defined by d (f, g) = sup {|f(x) g(x)| : x ∈ [0,1]}
 is a complete metric space. Give an example of an incomplete metric on this space.
- 5. (a) State and prove Schwarz's theorem. 3½
 - (b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function defined by

$$f(x,y) = \begin{cases} x^2 \tan^{-1} \left(\frac{y}{x}\right) - y^2 \tan^{-1} \left(\frac{x}{y}\right) \\ 0, & \text{elsewhere} \end{cases}$$

if $x \neq 0, y \neq 0$

Show that $f_{yx}(0,0) \neq f_{xy}(0,0)$. 3½

(c) Find the maxima and minima of the function $f(x, y) = x^4 + y^4 - 6(x^2 + y^2) + 8xy.$ 3½

9658